# Plan de Enseñanza # Introducción Este semestre es crítico para los estudiantes que se gradúan. El trabajo de revisión para el examen de ingreso a la escuela secundaria será la máxima prioridad de la enseñanza este semestre. La siguiente es una recopilación de "3 Planes de Enseñanza de Matemáticas para el Segundo Volumen de Noveno Grado". Espero que te sea de utilidad.
Capítulo 1 Plan de enseñanza de matemáticas para el segundo volumen del noveno grado Este semestre es un período crítico para el aprendizaje de la escuela secundaria y las tareas docentes son muy arduas. Por lo tanto, para completar las tareas docentes, debemos seguir de cerca el programa de estudios, combinar el contenido docente con la situación real de los estudiantes, captar los puntos clave y las dificultades y esforzarnos por completar con éxito las tareas de este semestre. El tiempo de enseñanza para la revisión general de la promoción de noveno grado es escaso, las tareas son pesadas y los requisitos son altos. Cómo mejorar la calidad y eficacia de la revisión general de matemáticas es un problema que todo profesor de matemáticas graduado debe resolver. rostro. El siguiente plan de revisión de la enseñanza se formula especialmente a continuación.
1. Análisis de la situación académica
Después de los cinco semestres anteriores de enseñanza de matemáticas, la base matemática y la actitud de aprendizaje de los estudiantes de esta clase han sido claramente visibles. A través de múltiples pruebas ascendentes y pruebas finales el semestre pasado, descubrimos que esta clase se caracteriza por una polarización extremadamente grave. Aunque ha surgido un grupo de estudiantes destacados que estudian mucho y logran excelentes resultados, los estudiantes atrasados básicamente han abandonado el estudio de matemáticas debido a sus muy bajos puntajes en matemáticas y su gran cansancio por aprender. En segundo lugar, algunos estudiantes de secundaria tienen recuerdos poco claros de algunos conocimientos básicos que han aprendido anteriormente y no los comprenden firmemente.
2. Ideología rectora
Adherirse a la política educativa del xx Congreso Nacional del Partido Comunista de China y continuar llevando a cabo una reforma profunda de la enseñanza del nuevo plan de estudios. Con base en el examen de ingreso a la escuela secundaria, comprender la dirección de las propuestas de exámenes de ingreso a la escuela secundaria bajo la nueva reforma curricular, centrarse en la enseñanza en el aula, realizar investigaciones sobre los cambios y tendencias de las propuestas de exámenes de ingreso a la escuela secundaria en los últimos años, explorar activamente métodos de revisión eficientes , consolidar la base matemática de los estudiantes y mejorar la capacidad de los estudiantes para resolver problemas y la precisión de las respuestas para lograr excelentes puntajes en matemáticas en el examen de ingreso a la escuela secundaria. Y a través de la docencia presencial de este semestre, hemos completado las tareas de enseñanza de matemáticas del segundo volumen de noveno grado y la enseñanza de repaso de matemáticas de toda la etapa de secundaria.
3. Análisis de contenidos didácticos
En este semestre, además de completar los contenidos de aprendizaje requeridos, comenzaremos a revisar los libros de texto de matemáticas para secundaria e incluiremos los contenidos didácticos. de los libros de texto de matemáticas de educación obligatoria de nueve años Se divide en dos partes: álgebra y geometría. Entre ellas, las seis secciones principales de la enseñanza de matemáticas en la escuela secundaria son: "Números reales y estadística", "Ecuaciones y funciones", "Soluciones". de Triángulos Rectángulos", "Triángulos", "Cuadriláteros" y "Círculos". Los puntos clave del examen.
Bajo los requisitos de los "Estándares Curriculares", cultivar el espíritu innovador y la capacidad práctica de los estudiantes es el objetivo de la enseñanza actual en el aula. En los últimos años, han aparecido gradualmente algunas preguntas novedosas en los exámenes de ingreso a la escuela secundaria, como preguntas abiertas de exploración, preguntas de comprensión lectora y preguntas de aplicación relacionadas con la vida real. Estos nuevos tipos de preguntas también ocupan una cierta posición en las preguntas del examen de ingreso a la escuela secundaria, y hay una tendencia de expansión año tras año. Si desea obtener buenos resultados en preguntas integrales, así como en preguntas aplicadas y preguntas abiertas, debe tener conocimientos básicos sólidos y capacidades de transferencia de conocimientos. Por lo tanto, en la etapa de revisión general, debemos comprender firmemente los conceptos básicos y dominar los métodos comunes para resolver algunos problemas comunes.
Principales problemas existentes en el proceso de resolución de problemas de los estudiantes:
(1) Revisión poco clara de las preguntas e incapacidad para comprender correctamente el significado de las preguntas
; (2) Al resolver problemas no soy bueno dibujando figuras geométricas o tengo desviaciones, lo que trae obstáculos para resolver problemas
(3) Capacidad insuficiente para aplicar de manera integral los conocimientos aprendidos
;(4) La geometría sigue siendo Esta es una dificultad para algunos estudiantes, principalmente debido a su deficiente capacidad de análisis y razonamiento geométrico.
IV.Objetivos de enseñanza
Actitudes y valores: explorar y mejorar activamente los métodos de aprendizaje de los estudiantes, mejorar la calidad del aprendizaje y formar gradualmente matemáticas correctas a través del aprendizaje, la comunicación, la cooperación y discusión.
Conocimientos y habilidades: comprender las imágenes, propiedades y aplicaciones de funciones cuadráticas; comprender los métodos de determinación y propiedades de triángulos similares y polígonos similares, y comprender la aplicación de la proyección y la vista en la vida. Dominar los métodos de cálculo relacionados con funciones trigonométricas de ángulos agudos. Proceso y métodos: a través de la exploración y el aprendizaje, los estudiantes aprenderán gradualmente a realizar cálculos de manera correcta y razonable, aprenderán gradualmente a observar, analizar, sintetizar y abstraer, y podrán utilizar la inducción, la deducción y la analogía para un razonamiento simple. Objetivos de enseñanza en clase: la tasa de excelencia en el examen de ingreso a la escuela secundaria alcanza el 30% y la tasa de aprobación: 80%.
5. Medidas tomadas
1. Estudiar detenidamente los nuevos estándares curriculares, estar completamente familiarizado con los libros de texto de matemáticas de la escuela secundaria y los objetivos de enseñanza, preparar cuidadosamente cada clase y preparar cuidadosamente un maestro. revisar el plan;
2. Tome cada clase con atención, capte los puntos clave, disperse las dificultades, resalte los puntos clave y trabaje duro para cultivar las habilidades
3. Preste atención a; reflexión posterior a la clase y registrar rápidamente las ganancias y pérdidas de una clase y acumular continuamente experiencia docente
4. Fortalecer la relación entre los maestros de la escuela, los padres y la sociedad, y trabajar juntos para mejorar el desempeño académico de los estudiantes; desempeño
5. Comunicarse activamente con otros maestros, fortalecer la investigación y reforma docente y mejorar los estándares de enseñanza
6. Escuchar siempre las buenas sugerencias racionales de los estudiantes
;7. Liderar el “medio” con los “dos extremos” La estrategia permanece sin cambios
8. Prestar atención a la orientación del aprendizaje independiente, el aprendizaje cooperativo, el aprendizaje por investigación y otros métodos de aprendizaje en la enseñanza;
9. Realizar con seriedad actividades en clase y extracurriculares para inspirar el interés de los estudiantes por aprender.
Capítulo 29 Plan de Enseñanza de Matemáticas para el Segundo Volumen de Grado 9 El año 20xx llega en un abrir y cerrar de ojos. Este año escolar tiene tanto nuevas tareas que completar como repasar para tener en cuenta. Es un semestre muy importante para cultivar la innovación de los estudiantes. Centrarse en las habilidades espirituales y prácticas y explorar nuevos modelos de enseñanza eficaz. Tomar la enseñanza en el aula como centro, enseñar estrechamente en torno a los libros de texto de matemáticas de la escuela secundaria y los "requisitos básicos" de las materias de matemáticas, realizar investigaciones sobre los cambios y tendencias en las propuestas de exámenes de ingreso a la escuela secundaria en los últimos años, recopilar exámenes, seleccionar ejercicios, establecer un banco de preguntas, esforzándose por captar la dirección del examen de ingreso a la escuela secundaria y explorar activamente métodos de revisión eficientes, esforzarse por lograr los objetivos de reducir la carga, aumentar la presión y aumentar la eficiencia, promover que los estudiantes aprendan de manera vívida, animada y activa, y esforzarse por lograr buenos resultados en el examen de ingreso a la escuela secundaria. A través de la enseñanza de cursos de matemáticas, los estudiantes pueden aprender efectivamente los conocimientos básicos y las habilidades básicas necesarias para la modernización y el estudio posterior, y progresar y desarrollarse en muchos aspectos, como la capacidad de pensamiento, la actitud emocional y los valores.
1. Análisis de la situación académica:
Este año escolar imparto las clases 3 y 4 del noveno grado. Las calificaciones de los estudiantes el semestre pasado fueron muy insatisfactorias y la polarización se hizo mayor. y más serio. Las calificaciones de algunos estudiantes han bajado significativamente y sus hábitos de estudio son deficientes. Las cosas van lentamente y hay varios estudiantes que deberían haber aprobado el examen de eugenesia, como Liang Lei, Liu Ziyu, Liu Jie, Chen Xiao, Manaiqin, etc. Esto puede deberse a que no existe la supervisión del maestro y hay También hay algunos estudiantes que tienen poca capacidad de autocontrol, no son estrictos consigo mismos e incluso se dan por vencidos. Estos requieren medidas correspondientes y educación del paciente en función de diferentes situaciones.
2. Análisis de libros de texto:
Solo quedan dos capítulos del nuevo contenido de este semestre: resolución de triángulos rectángulos y proyecciones.
3. Objetivos de la enseñanza:
Aprovechar los siguientes eslabones en el proceso de enseñanza:
(1) Preparar las lecciones cuidadosamente.
Estudie detenidamente los materiales didácticos y el programa de exámenes, aclare los objetivos de enseñanza, comprenda los puntos clave y las dificultades, diseñe cuidadosamente el proceso de enseñanza, preste atención a la conexión y el estado del contenido de cada capítulo con el anterior. y conocimientos previos, prestar atención a la reflexión después de clase y diseñar bien los detalles de la interacción profesor-alumno en cada clase.
(2) Dar buenas lecciones:
Sobre la base de preparar buenas lecciones, enseñe bien cada 45 minutos, mejore la eficiencia de 45 minutos y deje que todos los estudiantes escuchen. Comprender, por Para algunos alumnos con mala base, debemos proceder paso a paso y elegir ejemplos con diferentes niveles de dificultad, para que cada alumno pueda "comer" lleno y "comer" bien.
(3) Preste atención a la reflexión después de clase, registre las ganancias y pérdidas de una clase de manera oportuna y acumule experiencia docente continuamente.
(4) Corrija cada tarea: las tareas reflejan la efectividad de una clase y qué tan bien los estudiantes dominan el conocimiento. Corregir las tareas cuidadosamente permite a los maestros comprender rápidamente la situación y recetar el medicamento adecuado.
(5) Verifique los resultados del aprendizaje a tiempo para garantizar que las pruebas unitarias sean efectivas y oportunas, y que los exámenes no se corrijan de la noche a la mañana. Los comentarios inmediatos sobre errores típicos después del examen aprovechan el deseo de los estudiantes de saber la respuesta de inmediato.
(6) Orientación oportuna y corrección de errores: esfuércese por lograr la aprobación cara a cara y la enseñanza cara a cara. No deje las tareas de hoy para mañana. el tercer grado de la escuela secundaria. Comentarios después de clase. Implementar asistencia después de clase y verificar si hay omisiones. Seleccione ejercicios y exámenes apropiados, corrija la tarea de manera oportuna, señale los problemas cara a cara a los estudiantes de manera oportuna y guíe a los estudiantes para que los comprendan, sin dejar puntos difíciles para que los estudiantes puedan aprender algo.
(7) Comunicarse activamente con otros docentes, fortalecer la investigación y reforma docente y mejorar los estándares de enseñanza.
(8) Escuchar siempre las sugerencias buenas y racionales de los estudiantes.
(9) El pensamiento estratégico de liderar el “medio” con los “dos extremos” permanece sin cambios.
(10) Profundizar en la formación de estudiantes bipolares.
4. Realizar la labor docente de forma ordenada y en estricto apego a la marcha docente.
Hazlo con el corazón, hazlo desde los detalles, haz lo mejor que puedas para perseguir tus objetivos y utiliza tus habilidades para hacer un buen trabajo enseñando a la promoción de tercer grado de la escuela secundaria.
5. Fortalecer la orientación de revisión.
Revisión en dos etapas:
(1) La primera etapa revisa de manera integral los conocimientos básicos y fortalece la formación de habilidades básicas para que los estudiantes puedan dominar plenamente los conocimientos básicos de matemáticas de la escuela secundaria, mejorar competencias básicas, y lograrlas integrales, sólidas y sistemáticas, formando una red de conocimientos.
El propósito de la revisión en esta etapa es permitir que los estudiantes dominen de manera integral los conocimientos básicos de las matemáticas de la escuela secundaria, mejoren las habilidades básicas, sean integrales, sólidos y sistemáticos, y formen una red de conocimientos.
1. Presta atención a los libros de texto y revísalos sistemáticamente. Hoy en día, las preguntas del examen de ingreso a la escuela secundaria siguen siendo principalmente preguntas básicas. Algunas preguntas básicas son las preguntas originales o modificaciones de los libros de texto. Aunque las grandes preguntas posteriores son "más altas que los libros de texto", los prototipos son generalmente ejemplos o ejercicios. Los libros de texto, que son la base de las preguntas de los libros de texto, extensión, deformación o combinación, por lo que la primera etapa de revisión debe basarse en los libros de texto.
2. Organiza la revisión según secciones de conocimiento. Clasifique el conocimiento y divida todo el conocimiento de matemáticas de la escuela secundaria en once lecciones: la primera lección es números y fórmulas; la segunda lección es ecuaciones y desigualdades; la cuarta lección es estadística y probabilidad; la quinta lección es básica; gráficos; Clase 6: Figuras y transformaciones; Clase 7: Ángulos, rectas que se cruzan y rectas paralelas; Clase 8: Triángulos; Clase 9: Cuadriláteros; Clase 11: Círculos; Durante la revisión, el profesor presentará un resumen de revisión para cada conferencia y guiará a los estudiantes para que la revisen de acuerdo con el "resumen". Al mismo tiempo, se debe prestar atención a guiar a los estudiantes para que revisen los conocimientos olvidados de acuerdo con sus circunstancias personales específicas. clasificar conocimientos mientras revisan, profundizar su memoria y prestar atención a Guiar a los estudiantes para aclarar la connotación y extensión de conceptos, dominar la derivación o prueba de reglas, fórmulas y teoremas. La selección de ejemplos debe ser específica, típica y jerárquica. y preste atención a las ideas y métodos para analizar las respuestas a preguntas de ejemplo.
3. Preste atención a la comprensión de los conocimientos básicos y la orientación de los métodos básicos. El conocimiento básico se refiere a los conceptos, fórmulas, axiomas, teoremas, etc. involucrados en los cursos de matemáticas de la escuela secundaria. Se requiere que los estudiantes comprendan las conexiones internas entre varios puntos de conocimiento, aclaren la estructura del conocimiento, formen una comprensión general y sean capaces de aplicarlo de manera integral. Por ejemplo, la relación entre las raíces de una ecuación cuadrática y el punto de intersección de la gráfica de la función cuadrática y el eje x a menudo se cubre en el examen de ingreso a la escuela secundaria. Al revisar, debes comprender esta parte del contenido en su conjunto. , captar el material didáctico de la estructura y lograr dominio. Estas dos partes del conocimiento se transforman entre sí. Otro ejemplo es la pregunta sobre la conexión entre las ecuaciones cuadráticas y el conocimiento geométrico, que tiene características muy obvias y se deben dominar sus métodos básicos de solución.
Además de centrarse en los conocimientos básicos, las propuestas matemáticas del examen de acceso a la escuela secundaria también conceden gran importancia al examen de métodos matemáticos, como el método de combinación, el método de sustitución, el método discriminante y otros altamente operativos. métodos matemáticos. Al revisar, debes estar familiarizado con la connotación de cada método, los tipos de preguntas a los que se adapta, incluidos los pasos para la resolución de problemas.
4. Prestar atención a la comprensión y aplicación de las ideas matemáticas. Como el pensamiento de funciones, el pensamiento de ecuaciones, el pensamiento de combinar números y formas, etc.
(2) La segunda etapa aplica el conocimiento de manera integral, fortalece el cultivo de habilidades, construye la estructura y la red de conocimientos matemáticos de la escuela secundaria y comprende el contenido matemático en su conjunto, enfocándose en la construcción de la estructura y la red de conocimientos matemáticos de la escuela secundaria. y, en general, comprender el contenido matemático y mejorar las habilidades.
Cultivar la capacidad de aplicar de manera integral el conocimiento matemático para resolver problemas es uno de los propósitos importantes del aprendizaje de matemáticas. El propósito de la revisión en esta etapa es permitir a los estudiantes conectar el conocimiento de cada conferencia y aplicarlo de manera integral, para sacar inferencias de un caso y sacar inferencias de analogías. Los ejemplos y ejercicios en esta etapa deben tener un cierto grado de dificultad, pero no tan difíciles como sea posible. Deben ser aceptables para los estudiantes. Esto no sólo puede estimular el deseo de los estudiantes de aprender a resolver problemas difíciles y progresar. Permita que los estudiantes obtengan conocimientos al resolver problemas difíciles. Reconozca su propia fortaleza, mejore su confianza para seguir adelante y genere un deseo más fuerte de conocimiento. La segunda etapa es la extensión y mejora de la revisión de la primera etapa y debe centrarse en cultivar las habilidades matemáticas de los estudiantes. En esta etapa, cada lección de repaso debe diseñarse cuidadosamente y se debe prestar atención a la formación de ideas matemáticas y al dominio de los métodos matemáticos. Hay mucho contenido en la revisión general en las escuelas secundarias. La revisión debe resaltar los puntos clave, comprender los puntos clave y resolver problemas. Esto requiere aprovechar plenamente el papel de liderazgo de los maestros.
El contenido de revisión es lo que los estudiantes ya han estudiado, y el dominio del contenido del libro de texto por parte de cada estudiante es diferente. Esto requiere que los maestros hagan todo lo posible para estimular la iniciativa y el entusiasmo de los estudiantes por la revisión, y guiarlos para que sean. Para la revisión, de acuerdo con la situación específica del individuo, verificar omisiones y llenar los vacíos, clasificar el conocimiento y los métodos de resolución de problemas, y profundizar la memoria sobre la base de la formación de una estructura de conocimiento. Además de tener diversas formas de revisión y tipos de preguntas novedosos para despertar el interés de los estudiantes en la revisión, los métodos de enseñanza de las lecciones de revisión también deben diseñarse cuidadosamente para mejorar la efectividad de la revisión.
En sexto lugar, continuar estudiando negocios y mejorar las capacidades y estándares comerciales.
Participar activamente en estudios de negocios, leer libros y periódicos, y participar en capacitaciones organizadas por la escuela, para que puedan trabajar mejor por la reforma de la educación básica, dominar nuevas habilidades y técnicas y continuar trabajando duro. , aprender de las fortalezas de los demás, evitar las debilidades y trabajar duro Hacer que la enseñanza sea más innovadora, los métodos más flexibles y los medios más avanzados.
7. Asesoramiento en capas.
Capítulo 3 y 9 Plan de enseñanza de matemáticas para el volumen 2 1. Situación básica:
Este semestre es un período crítico para el aprendizaje de la escuela secundaria. Este semestre me desempeño como profesor de matemáticas. Clase 9 (1). El trabajo es el nuevo material didáctico experimental estándar del plan de estudios. ¿Cómo utilizar el nuevo material didáctico estándar del plan de estudios con nuevos conceptos? ¿Cómo implementar el espíritu de los nuevos estándares curriculares en la enseñanza? Esto requiere un sentido de innovación en el proceso de enseñanza y guiar a los estudiantes a pensar en los problemas de una manera diferente a la enseñanza anterior. Por lo tanto, al realizar las tareas docentes, es necesario crear la mayor cantidad de situaciones posible que permitan a los estudiantes experimentar el proceso de exploración, conjetura y descubrimiento. Y combine el contenido de la enseñanza y la situación real de los estudiantes para comprender los puntos clave y las dificultades. Establecer el concepto de educación de calidad, con el objetivo de cultivar el desarrollo integral de talentos de alta calidad, para todos los estudiantes, para que los estudiantes puedan desarrollarse en los aspectos moral, intelectual, físico, estético, laboral y otros. Para hacer un buen trabajo en educación y enseñanza este semestre, este plan está especialmente formulado.
2. Ideología rectora:
Las matemáticas de la escuela secundaria se guían por las políticas educativas y de enseñanza del partido y del país y se implementan de acuerdo con el plan de estudios de matemáticas de educación obligatoria de nueve años. estándares Su propósito es enseñar a Educar a las personas para que cada estudiante pueda obtener el desarrollo más adecuado para sí mismo en este proceso de aprendizaje de las matemáticas. A través de la enseñanza de matemáticas de noveno grado, brindamos el conocimiento matemático básico y las habilidades básicas necesarias para la producción y el estudio posterior, cultivamos aún más la capacidad informática, la capacidad de pensamiento y la capacidad de imaginación espacial de los estudiantes, y podemos utilizar el conocimiento que han aprendido para resolver problemas prácticos simples y capacitar a los estudiantes en conciencia de innovación matemática, buena calidad de personalidad y perspectiva materialista preliminar.
3. Contenido de enseñanza:
Las matemáticas que se imparten en el tercer grado de la escuela secundaria este semestre incluyen funciones cuadráticas y círculos, que son clases nuevas. Es principalmente una revisión integral de. prepararse para el examen de ingreso a la escuela secundaria.
IV. Propósitos de la enseñanza:
1. Actitudes y valores: A través del aprendizaje, la comunicación, la cooperación y la discusión, explorar y mejorar activamente los métodos de aprendizaje de los estudiantes, mejorar la calidad del aprendizaje y gradualmente. formar valores matemáticos correctos.
2. Conocimientos y habilidades: Comprender los conceptos de puntos, rectas, circunferencias y las relaciones posicionales de las circunferencias. Dominar conceptos y cálculos como tangentes a un círculo y ángulos relacionados con un círculo. Comprender conceptos relacionados con la clasificación y análisis de datos, ser capaz de calcular la varianza, la desviación estándar, etc., ser capaz de calcular la probabilidad utilizando tablas o dendrogramas y realizar algunas aplicaciones sencillas de los conocimientos anteriores. Domine los puntos de conocimiento de los libros de texto de matemáticas de la escuela secundaria y los "requisitos básicos" de las materias de matemáticas.
3. Proceso y métodos: a través de la exploración y el aprendizaje, los estudiantes aprenderán gradualmente a realizar cálculos de manera correcta y razonable, aprenderán gradualmente a observar, analizar, sintetizar y abstraer, y podrán utilizar la inducción, la deducción y la analogía. para hacer razonamientos simples. Clasificar el conocimiento sobre los libros de texto de matemáticas de la escuela secundaria y los "requisitos básicos" de la disciplina matemática, llevar a cabo una revisión especial de los contenidos principales de las "seis secciones principales" de las matemáticas de la escuela secundaria, llevar a cabo una enseñanza por capas oportuna, enfrentar a todos los estudiantes, cultivar y desarrollar a todos los estudiantes
5. Puntos importantes y difíciles en la enseñanza
La primera etapa (semana 5 a semana 12): revisión integral de conocimientos básicos y fortalecimiento de habilidades básicas formación
El propósito de esta etapa de revisión es permitir que los estudiantes dominen de manera integral los conocimientos básicos de matemáticas de la escuela secundaria, mejoren las habilidades básicas, sean integrales, sólidos y sistemáticos, y formen una red de conocimientos.
1. Presta atención a los libros de texto y revísalos sistemáticamente.
Hoy en día, las preguntas del examen de ingreso a la escuela secundaria todavía se basan principalmente en preguntas básicas. Algunas preguntas básicas son las preguntas originales o las preguntas modificadas del libro de texto, aunque las grandes preguntas posteriores son "más altas que el libro de texto". ", los prototipos generalmente todavía están en el libro de texto. Los ejemplos o ejercicios son extensiones, deformaciones o combinaciones de temas en el libro de texto, por lo que la primera etapa de revisión debe basarse en el libro de texto. Es necesario profundizar en los materiales didácticos y nunca romper con los libros de texto. Los contenidos de los libros deben resumirse y organizarse para formar una estructura. Los estudiantes deben comprender los ejemplos, ejercicios y tareas del libro de texto y poder realizarlos. Las palabras "leer", "pensar" e "intentar" al final del libro también requieren que los estudiantes piensen detenidamente y se concentren. en noveno grado Realice los ejemplos y ejercicios de contenidos clave, como el contenido didáctico para octavo grado y otros contenidos clave, con cuidado y cuidado, uno por uno, y preste atención al resumen y organización de los métodos de resolución de problemas. Participar ciegamente en tácticas de resolución de problemas y pedir a los estudiantes que hagan una gran cantidad de ejercicios extracurriculares durante todo el día no tiene ningún efecto obvio y es poner el carro delante del caballo.
La enseñanza de los profesores en esta etapa organiza principalmente la revisión según bloques de conocimiento. La parte de álgebra se puede dividir en seis capítulos: Capítulo 1 Números y Expresiones; Capítulo 2 Ecuaciones y Desigualdades Capítulo 3 Funciones; Gráficos; Capítulo 5 Gráficos y Transformaciones; Capítulo 6 Estadística y Probabilidad. Durante la revisión, el profesor puede presentar un resumen de revisión para cada capítulo y guiar a los estudiantes para que lo revisen de acuerdo con el "resumen". Al mismo tiempo, se debe prestar atención a guiar a los estudiantes para que revisen los conocimientos olvidados de acuerdo con sus circunstancias personales específicas. Clasificar conocimientos durante la revisión y profundizar su memoria. Prestar atención a guiar a los estudiantes para aclarar la connotación y extensión de conceptos, dominar la derivación o prueba de reglas, fórmulas y teoremas. La selección de ejemplos debe ser específica, típica y jerárquica. y preste atención al análisis de las ideas y métodos para responder preguntas de ejemplo.
2. Preste atención a la comprensión de los conocimientos básicos y la orientación de los métodos básicos.
El conocimiento básico se refiere a los conceptos, fórmulas, axiomas, teoremas, etc. involucrados en los cursos de matemáticas de la escuela secundaria. Se requiere que los estudiantes comprendan las conexiones internas entre varios puntos de conocimiento, aclaren la estructura del conocimiento, formen una comprensión general y sean capaces de aplicarlo de manera integral. Por ejemplo, la relación entre las raíces de una ecuación cuadrática y el punto de intersección de la gráfica de la función cuadrática y el eje x a menudo se cubre en el examen de ingreso a la escuela secundaria. Al repasar, debes comprender esta parte del contenido en su conjunto. , captar el material didáctico de la estructura y lograr dominio. Estas dos partes del conocimiento se transforman entre sí. Otro ejemplo es la pregunta sobre la conexión entre las ecuaciones cuadráticas y el conocimiento geométrico, que tiene características muy obvias y se deben dominar sus métodos básicos de solución. Cada año, habrá uno o dos problemas de matemáticas difíciles y completos en el examen de ingreso a la escuela secundaria. El conocimiento utilizado para resolver dichos problemas es el conocimiento básico que los estudiantes han aprendido, no depende de los especiales y no tiene universalidad. Habilidades para la resolución de problemas.
Además de centrarse en los conocimientos básicos, las propuestas matemáticas del examen de acceso a la escuela secundaria también conceden gran importancia al examen de métodos matemáticos, como el método de combinación, el método de sustitución, el método discriminante y otros altamente operativos. métodos matemáticos. Al revisar, debes estar familiarizado con la connotación de cada método, los tipos de preguntas a los que se adapta, incluidos los pasos para la resolución de problemas.
3. Prestar atención a la comprensión y aplicación de las ideas matemáticas.
Por ejemplo, si se dicen las variables independientes y las variables dependientes, y se les pide que escriban expresiones analíticas de funciones, o usen expresiones analíticas de funciones para encontrar intersecciones, etc., la idea de Es necesario utilizar funciones. Los profesores deben permitir que los estudiantes profundicen su comprensión de este problema. Para una comprensión profunda de las ideas, haga más preguntas con contenido relacionado. Otro ejemplo es el pensamiento de ecuaciones, que utiliza la conexión y la relación de restricción entre cantidades conocidas y desconocidas. cantidades para convertir cantidades desconocidas en cantidades conocidas estableciendo ecuaciones; otro ejemplo son los números. Al resolver este tipo de problemas, muchos estudiantes solo prestan atención al conocimiento algebraico o al conocimiento geométrico, y no pueden convertir hábilmente el conocimiento algebraico y el conocimiento geométrico entre sí. Se recomienda que varios estudiantes se concentren en el análisis durante la revisión. Las preguntas permiten a los estudiantes comprender cuidadosamente cómo se presenta el problema de combinar números y formas en las preguntas y cómo transformarlo.
La segunda etapa (semana 13-18): aplicación integral del conocimiento y fortalecimiento del desarrollo de habilidades
La segunda etapa de la revisión del examen de ingreso a la escuela secundaria debe basarse en la construcción de la estructura del conocimiento y red de matemáticas de la escuela secundaria Principalmente, captar el contenido matemático en su conjunto y mejorar las habilidades.
Cultivar la capacidad de aplicar de manera integral el conocimiento matemático para resolver problemas es uno de los propósitos importantes del aprendizaje de matemáticas. El propósito de la revisión en esta etapa es permitir a los estudiantes conectar el conocimiento de cada capítulo y aplicarlo de manera integral, para sacar inferencias de un caso y hacer inferencias por analogía. Los ejemplos y ejercicios en esta etapa deben tener un cierto grado de dificultad, pero no tan difíciles como sea posible. Deben ser aceptables para los estudiantes. Esto no sólo puede estimular el deseo de los estudiantes de aprender a resolver problemas difíciles y progresar. Permita que los estudiantes obtengan conocimientos al resolver problemas más difíciles. Reconozca su propia fortaleza, mejore su confianza para seguir adelante y genere un deseo más fuerte de conocimiento.
Si la primera etapa es la base y el enfoque de la revisión general y se centra en la formación de base dual, entonces la segunda etapa es la extensión y mejora de la revisión de la primera etapa y debe centrarse en cultivar las habilidades matemáticas de los estudiantes. En esta etapa, cada lección de repaso debe diseñarse cuidadosamente y se debe prestar atención a la formación de ideas matemáticas y al dominio de los métodos matemáticos. Hay mucho contenido en la revisión general en las escuelas secundarias. La revisión debe resaltar los puntos clave, comprender los puntos clave y resolver problemas. Esto requiere aprovechar plenamente el papel de liderazgo de los maestros. El contenido de revisión es lo que los estudiantes ya han estudiado, y el grado de dominio del contenido del libro de texto por parte de cada estudiante es diferente. Esto requiere que los maestros hagan todo lo posible para estimular la iniciativa y el entusiasmo de los estudiantes por la revisión y guiarlos para que revisen de manera específica. , y de acuerdo con su situación de necesidades específicas, verificar omisiones y llenar los vacíos, clasificar conocimientos y métodos de resolución de problemas, y profundizar la memoria sobre la base de la formación de una estructura de conocimiento. Además de tener diversas formas de revisión y tipos de preguntas novedosos para despertar el interés de los estudiantes en la revisión, los métodos de enseñanza de las lecciones de revisión también deben diseñarse cuidadosamente para mejorar la efectividad de la revisión.
6. Medidas docentes:
Atendiendo a la situación anterior, planeo tomar las siguientes medidas en la labor docente en el próximo curso escolar:
1. Nuevos cursos Antes de empezar, dedica una semana aproximadamente a repasar brevemente todo el material del semestre anterior, especialmente la sección de geometría.
2. En el proceso de enseñanza, intentar adoptar un método educativo de más estímulo, más orientación y menos crítica.
3. La velocidad de enseñanza debe adaptarse a la mayoría de los estudiantes, tratar de adaptarse a los de bajo rendimiento y centrarse en el avance general.
4. Cuando en la enseñanza de nuevos cursos intervienen conocimientos antiguos, revíselos en consecuencia.
5. Durante la etapa de revisión, se anima a los estudiantes a usar su cerebro y sus habilidades prácticas. A través de varios ejercicios, preguntas de prueba integrales y preguntas de prueba simuladas, los estudiantes pueden familiarizarse gradualmente con cada punto de conocimiento. capaz de utilizarlo hábilmente.
7. Progreso de la enseñanza:
Semana 1 - Semana 2, Capítulo 2 Función Cuadrática
Semana 3 - Semana 4, Capítulo 3 Círculo
Semana 5 - Semana 6 Repaso de matemáticas de séptimo grado
Semana 7 - Semana 8 repaso de matemáticas de octavo grado
Semana 9 - Examen del ciclo 10
Semana 11- 12 Repaso de Matemáticas de Noveno Grado
Tema 1 de la Semana 13
Tema 2 de la Semana 14
Tema Tres de la Semana 15
Semana 16-19 Entrenamiento integral en simulación
Además del plan anterior, también planearé llevar a cabo el trabajo de transformar a individuos de bajo rendimiento, enfocándome en la teoría matemática en la enseñanza. La conexión con la práctica social alienta a los estudiantes a observar y Piense más en los problemas matemáticos de la vida real, cultive gradualmente la capacidad de los estudiantes para utilizar el conocimiento de los libros para resolver problemas prácticos y preste atención a las tareas prácticas.