Como se muestra a continuación:
El origen de la multiplicación
Los métodos de cálculo de la multiplicación en la antigua Grecia, el antiguo Egipto, la antigua India y la antigua Roma eran relativamente complicados y Es difícil de recordar porque sin el sistema de acarreo, en principio se necesita una tabla de multiplicar infinitamente grande, por lo que no existe la tabla del nueve y nueve. Por ejemplo, la tabla de multiplicar griega antigua debe indicar 7x8, 70x8, 700x8, 700x8, 7000x8...
En contraste, como la tabla nueve-nueve se basa en el sistema decimal, 7x8=56, 70x8 =560, 700x8=5600, 7000x8=56000, solo un representante es 7x8=56. En el antiguo Egipto no existían las tablas de multiplicar. Los arqueólogos han descubierto que los antiguos egipcios calculaban los productos mediante la suma acumulativa. Por ejemplo, para calcular 5x13, primero suma 13+13 para obtener 26, luego suma 26+26=52 y luego suma 13 para obtener 65.
La aritmética de la antigua Babilonia tenía un sistema de acarreo, lo que supuso una gran mejora con respecto a Grecia y otros países. Sin embargo, la aritmética babilónica utiliza el sistema de base 60. En principio, una tabla de multiplicar de "59x59" requiere 59*60/2=1770 elementos; debido a que la tabla de multiplicar de "59x59" es demasiado grande, los babilonios nunca usaron una "tabla de multiplicar" similar. a la mesa del nueve-nueve.
Los arqueólogos nunca han encontrado una tabla de multiplicar de "59x59" similar a la Tabla del Nueve-Nueve. Sin embargo, los arqueólogos descubrieron que los babilonios usaban una "mesa cuadrada" única de 1x1=1, 2x2=4, 3x3=9...7x7=49,...9x9=81...16x16=256...59x59=. 3481. Para calcular el producto de dos números a y b, los babilonios se basaron en su mejor álgebra, axb=((a+b)x(a+b)-axa-bxb)/2.